Drinking Water Quality Deterioration in Distribution Systems: Colored Water Formation and Its Control

Vernon L. Snoeyink

Ivan Racheff Professor of Environmental Engineering

Department of Civil and Environmental Engineering,

University of Illinois at

Urbana-Champaign

ACKNOWLEDGMENTS

- P. Sarin, D. Lytle, W. Kriven, M. Beckett, K. Jim, J. Bebee, J. Clement, Mike Hayes, J. M. Bukowski, M. Schock, F. Kuch, H. Sontheimer
- American Water Works Association Research Foundation(AWWARF) and Metropolitan Water Resources Authority (MWRA), Boston, MA
- Center for Microanalysis of Materials, Materials Research Laboratory, UIUC
- NSF Center for Advanced Cement Based Materials, UIUC

Outline

- Background
- Conceptual model of tubercles
- Iron release: mechanism and control
- Particle formation
- Conclusions

Effects of Iron Scales and Iron Release

- Particle formation
- Discolored water
- Staining of fixtures, clothing
- Metallic tasting water
- Flow restriction
- Oxidant demand
- Biofilm

Corrosion is different from Iron Release

Corrosion of iron is the conversion of "metallic iron" to an oxidized form, either soluble or an oxidized scale.

- Fe \rightarrow Fe²⁺ + 2e⁻
- Usually measured as weight loss from metallic iron

Iron release is the transport of iron, in soluble form or as a particle, from corrosion scale or metal to bulk water.

- Cumulative effect of *corrosion*, *hydraulic scouring and dissolution* of corrosion scales.
- Usually measured as concentration of iron in bulk water

"Red Water" Formation

Available cross-section for flow – MWRA Cast Iron Pipes

Cross-section of a corrosion scale:

Corrosion scale from a 70 years old galvanized steel pipe from NIWC, Urbana, IL.

Scale Structure and Composition

- Corrosion scales are *porous deposits* with a hard *shell-like layer*
- *Reservoir of Fe(II)* ions exists in the scale interior
- Composition
 - *Shell-like layer:* Magnetite (Fe₃O₄) and goethite (α-FeOOH)
 - *Porous Interior:* Mostly Fe(II) compounds, green rusts (possible), and ???
 - Fe(III) compounds present only in the top layers. Also other solids.

Corrosion scales have a "Reservoir of Fe²⁺ ions"

Sample Wet Chemistry Analysis

Sample Details		% Ferrous	% Ferric
Sample I.D.	Sampling Position		
NIWC-A	Entire Scale	31	69
Boston # 3	Тор	4	96
	Middle	94	6
	Bottom	92	8
Boston # 6	Тор	28	72
	Middle	80	20
	Bottom	80	20

Tubercle Structure

- 1. Corroded floor
- 2. Internal cavity solid
- 3. Internal cavity fluid
- 4. Shell-like layer
- 5. External crust

After H. Herro, Nalco Chemical

University of Illinois at Urbana-Champaign

Electron/Charge Flow in a Tubercle Alternative 2, DO Present

Fe²⁺ + 2 H₂O
$$\rightarrow$$
Fe(OH)_{2(s)} + 2 H⁺
4 e + O₂ + 4 H⁺ \rightarrow 2 H₂O

CaCO₃ may form if pH increases. Will porosity decrease?

Electron/Charge Flow in a Tubercle Alternative 3, DO Absent (Kuch Mechanism)

Mechanism of Iron Release

Iron Release Mechanisms (Possible)

- 1. Kuch Mechanism
- 2. *Porous* shell-like layer: Fe²⁺ diffuses into bulk solution
- 3. *Fracture* of the shell-like layer: Fe²⁺ solution is released from the tubercle cavity

Other: Reduction by organic matter; microbial processes. Not discussed here.

Pipe Loop Setup

Iron Release – Effect of DO (NIWC Pipes)

University of Illinois at Urbana-Champaign

Iron is Released from Corrosion Scales

as " Fe²⁺"

Chlorine and Oxygen Residual - Flow and Stagnation (NIWC Pipes)

University of Illinois at Urbana-Champaign

Iron Release – Extended Exposure to Anaerobic Conditions (NIWC Pipes)

Iron Release from Corrosion Scales

Flowing Water with oxidants

Stagnant Water with oxidants "Anoxic layer"

Prolonged Stagnation

Oxidant supply restored

Conclusions and Implications of the Conceptual Model

- Fe II dissolution = iron release = colored water
- Stagnation promotes Fe II dissolution
- Stagnation increases shell-like layer porosity
- So, avoid stagnation
- Iron release is reduced by scale oxidation
- So, keep oxidants next to pipe wall
- Avoid changes in pH and alkalinity
- Avoid increases in TDS
- Keep pH near pH_s for CaCO₃ precipitation

Key Iron Release Model Features Role of Particles/Colloids

- When oxygen and chlorine are in contact with scale, ferrous ions are oxidized within the scale or close to the surface- *the iron is incorporated into the scale*
- When oxidants are not present at the surface, ferrous iron can diffuse into solution and is oxidized there- *particles form in the water*

Particle Generation Reactor

DO electrode

Jiffy-Jack"

Gas feed line

pH electrode

Acid/base titrator

1.2 L cell

Color Development in High pH (10) and High DIC (100 mg C/L) Water 5 mg Fe/L, 23°C, PO₂=0.122 atm

5 seconds

15 seconds

45 seconds

180 seconds

University of Illinois at Urbana-Champaign

The Effect of pH on the Stability of Iron Suspensions 5 mg Fe/L, DIC= 5 mg C/L, 22°C, PO₂=0.122 atm pH= (a) 6, (b) 7, (c) 8, and (d) 9

University of Illinois at Urbana-Champaign

Effect of Orthophosphate on Iron Suspension Stability 5 mg Fe/l, PO₂= 0.122 atm, pH=8, DIC= 5 mg C/L, 22 °C

The Effect of Orthophosphate on Iron Colloids

TEM micrograph of iron particles

1 mg Fe/L, pH=7.85 to 7.89, 22.5 to 23°C, DIC= 5 mg C/L, PO_2 =0.122 atm

0 mg PO₄/L (crystal)

 $0.5 \text{ mg PO}_4/L$

 $3 mg PO_4/L (am)$

The Effect of "Corrosion Inhibitors" on Turbidity

 $Fe_{tot} = 5 \text{ mg/L}, DIC = 5 \text{ mg C/L}, 0.122 \text{ atm O}_2, 23^{\circ}C$

The Effect of Corrosion Inhibitors on Color

 $Fe_{tot} = 5 \text{ mg/L}, DIC = 5 \text{ mg C/L}, 0.122 \text{ atm O}_2, 23^{\circ}C$

The Effect of Polyphosphate on Filterable Iron

DIC=5 mg C/L, pH=8, Fe II = 1 mg/L

The Effect of Orthophosphate and pH on ZP Fe_{tot}= 5 mg/L, DIC= 5 mg C/L, 0.122 atm O₂, 22°C

The Effect of SAPP on Turbidity when 100 mg/L Calcium is Present

Fe_{tot}= 5 mg/L, DIC= 5 mg C/L, 0.122 atm O₂, 22°C, 3 mg PO₄/L

Iron Particles and Iron Suspensions Conclusions

- 1. Color and turbidity increased with DIC below pH 8 to 8.5
- 2. Color and turbidity increased linearly with increasing iron
- 3. Intermediate, short-lived solid formed in higher pH and DIC waters
- 4. Particle charge and suspension stability increased with increasing pH

The Effect of Phosphates on Iron Particles Conclusions

Phosphates

- 1. Reduced suspension color and turbidity
- 2. Became part of the iron colloid
- 3. Increased the negative charge of iron colloids
- 4. Stabilized iron colloids
- 5. Inhibited colloid growth and flocculation
- 6. But, what is the effect on the scales?

Historical Overview – Importance of Corrosion Scales

 \Box 1920's – 1960's

□ 1975 - 1981 Sontheimer, Kölle et al.

☐ 1984 - 1989 Kuch,Sontheimer et al.

Corrosion & Corrosion protection

- CaCO₃ and rust are components of "good" corrosion scales (Tillmans, Baylis, Larson)
- Concept of Langelier Index
- Importance of "Buffer Intensity" as the most important factor for corrosion control (Stumm)
- Importance of scale structure and composition
- "Siderite model for formation of protective scales"

Iron Release vs Corrosion Rate

- Iron Uptake was differentiated from Corrosion Rate
- First to highlight chemical reduction of corrosion scales as a possible mechanism for *non-steady* state corrosion
- Concept of easily reducible phase γ-FeOOH

Formation of a Tubercle

At A: Fe \rightarrow Fe²⁺ + 2 e

<u>At C</u>: $\frac{1}{2}$ O₂ + 2 H⁺ + 2 e \rightarrow H₂O

At A:
$$Fe^{2+} + \frac{5}{2}H_2O + \frac{1}{4}O_2 \rightarrow Fe(OH)_{3(s)} + 2H^+$$

N. B.: Must balance charge at A and C

Electron/Charge Flow in a Tubercle Alternative 1

Fe
$$^{2+}$$
 + 2 H₂O \rightarrow Fe(OH)_{2(s)} + 2 H⁺

$$2 H^+ + 2 e \rightarrow H_2$$

Tubercle growth from solid and gas

